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We conerider the motion of a conservative system with two degrees of freedom in a plane 
harmonic force field, i.e. in a field whoae potential V (x, y) satisfies the Laplace equation 
A V(%, y) = 0. 

The simpleat example of ouch a field is a homogeneous gravitational force field. Another 
example is the field formed by the logarithmic potential V= A In r or the multipole field 
with the potential V = Ar”coa n U. It is clear that harmonic fields include those formed by 
superposition of the above fields. The potential of an arbitrary harmonic field can be expre- 
sned in the form V (x, y) = Re j(r) CR V(r, y) = Im f(z), where f(z) is an arbitrary analytic 
function of the complex variable x = z + iy. 

Harmmic force fielda occur in various phyerical problems, e.g. in investigating the mo- 
tion of charged particles in electric and magnetic fields [ 1 and 21, in computing of electro- 
nic trajectories in electron optics [5 and 41, etc. 

1. Let M be the representing point of the system under consideration. If we neglect the 
relativistic variation of the marm m with changes in velocity v (i.e. if we assume that v/c < 
CK I, where c is the velocity of light in vacuum), then the problem of finding the trajectories 
of motion of a point of unit mass (m = 1) in an arbitrary conservative field with the potential 
V(x, y) with an energy constant h reduce0 to integrating the nonlinear second-order differ- 
ential equation [ 5] 

Y “=(1+y’+y*~ + T) (ID = In v/;! (h - V (2, y))) (1.1) 

Assuming that the potential V (z, y) satirfiea the Laplace equation A I’ (x, y) = 0, we 
infer from the energy integral and from (1.1) that 

A02 = 0, AQ, (2, y) = -2 (a&2 + (I)$) (1.2) 

i.e. that the function v’ is alao harmonic, and that @(x, y) belongs to the class of super- 
harmonic functions [6] by virtue of the condition A@(%, y) < 0. 

We note that the case A@(%, y) I 0, A I’.< 0, Le. the caee where @(z, y) is a harmonic 
function and where the potential V (x, y) bslonga to the claarr of superharmonic functions, 
yield0 a hydromechanical analogy [7]. 

B. Let ua reduce differential equation (1.1) of the trajectories to ita simplest form. In- 
troducing the angle $(x, y) = arc tg y ’ formed by the velocity vector v and the positive X- 
axis. we obtain 

Next, writing 
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(2.2) 

and introducing the complex variable E = x + iy, we can readily obtain from (2.1) and (2.2) 
an expression for the logarithm of the complex velocity [= v exp (-i+)of the point M, 

o (z) dz 
cl 111 5 = ___ 02 

(2.3) 

Here w (z) is an analytic function of the complex variable z, this is because one of the 
Cauchy-Riemann conditions is fulfilled by virtue of the condition of a harmonic force field 
while the other is fulfilled identically by virtue of the continuity of the partial derivatives. 

We denote the integral of the analytic functionw(z) by W(z), i.e. 

w (z) = cp (2, Y) + ix (2, Y) (W(x)=io+)dz) (2.4) 

Now, integrating (2.3) and separating the real and imaginary parts, we find by virtue of 
(2.4) that 

cp (2, y) = I/, v2 (5, Y) + cons& dx (5, Y) = --3; (5, Y) dll, (2.5) 

This implies that the lines 4(x, y) = const are associated with the eguipotential lines 
V(z, y)= const, and that the lines x(x, y) = const are no longer associated with tbe isocli- 
nes of the trajectory 6 (z, y) = const as they are in the case of the hydromechanical ana- 

logy [71. 

3. For an arbitrary harmonic force field with the potential V(x, y) the relationship bet- 
ween the functions I,$(%, y) and X(x, y) is given by nonintegrable differential relation (2.5) 
It is therefore impossible to obtain a closed solution in the general case of an arbitrary 
harmonic function. The trajectory can be constructed quite accurately by graphic means, 
however. This involves using the grid formed by the equipotential lines V (z, y) = const and 
the lines x (z, y) = const orthogonal to them. 

With this method approximation of the trajectory between two neighboring points i.7 linear 
(in contrast to the Kelvin “radii of curvature” method [8 and 91) as in [lo], the difference 
being that the lines x(x, y) = const are no longer the isoclines of tbe trajectories. 

Let the initial position of the moving point be A, (zO = x0 + iyo ), and let its initial velo- 

city be vo= v. exp (i$,,). 

We construct a ray from the point A, at the angle $o to the x-axis. This ray intersects 

the line x1 = x(x t, y t) at the point A 1 (zl = x1 + iy l); 
.We continue to approximate the trajectory with a broken line by replacing each trajectory 

arc passing through the two neighboring lines x,+, and x;+, by the chord Attl A, +2 at the 
angle $,+t to the x-axis; this angle can be determrned by integrating (2.5). Making use of 

the energy integral and noting that thelntegrand in the right side of (2.5) is of fixed sign, we 
apply the mean-value theorem to obtain 

Xj - Xj+l 
9,+:- 4)j = 2 (/L - vi*) (j=O, 1, 2,. . .) 

where 5 * is the mean value between q = V (rj, 3) and V,+l = V (z,+~, Y,+~ ). 
Thus, making use of recursion relation (3.1) and knowing 9, (the initial angle of departure 

$. is prescribed), we can find $I~+~ and thus construct the points Aj+t . Joining these points 
with a broken line, we obtain the approximate shape of the trajectory. 

4. Let us consider tbe existence of closed trajectories (cycles) in harmonic force fields. 

To do this we make use of the notion of the quasi-index j! of the singular point 0, of the 

force field potential defined as the limiting value of the curvilinear integral taken over a 

circle (y) of the small radius r surrounding tbe sir ‘J&U point 0, [If, i.e. 

As we showed in [ 111, the existence of cycles implies fulfillment of tbe basic relation 
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(4.2) 

where I is the sum of the quasi-indices I, of the singular points 0, v = 1, 2,..., k) lying 
inside the closed orbit (C). Integration is carried out over the domain (0) minus the singular 

points 0 bounded by the contour (C). 

The allowing theorems are valid for harmmic force fields: I 

T h t o r e m 1. If some closed trajectory (C) exists in the domain (C) of the force 

field under consideration, then the sum of the quasi-indices Jj of the singular points 0) 
lying within (C) in this domain must satisfy the condition 

k 

-oo<J<1 J=~ Jj 

j=l 1 
(4.3) 

2 
T h e o r e m 2. If the sum of the quasi-indices II of the singular points Or G = l, 

,..., k) satisfies the condition 

(4.4) 

in the domain (G) of the force field under consideration, then there are no closed trajector- 
ies (cycles) in the domain (C). 

The proofs of these theorems follow directly from basic relation (4.2) if we recall that 

the condition Aa < 0 holds for harmonic force fields. 

5. Let us consider some applications. Let the equation of the trajectories in polar co- 
ordinates be of the form r = r(a). Making use of the expression 

g-_arCtgpga+r 
,r’ - r tg a 

famihr to us from differential geometry, we can rewrite differential equation (2.5) of the 
trajectories in polar coordinates, 

(r’r + r-r)& (r,a) = -2 (h - V (r, a))(- rr” + 2r’a + r2) da (5.2) 

Here the prime denotes differentiation with respect to a; h is the energy constant, 
For example, for a multipole field with the potential 

ni cosna 
V(r’,a)=-- 2n - 

r" IA=%) 
where M is the dipole moment, we find from (2.3), (2.4), aad (2.5) that 

A cos na A sin na 
T’= $l 7 XZ--- 

i” (5.3) 

and differential equation (5.2) of the trajectories on introduction of the new variable f= l/r 
when the energy constant h is equal to zero becomes 

n (%‘2 f %r) (E’tg na + 5) = 2E2 (5” + E) (5.4) 

Let us investigate the values of the parameter n for which differential equation (5.4) of 
the trajectories admits of periodic solutions associated with closed orbits (cycles). To do 
this we compute the quasi-index J of the singular point 0 (r = 0) of the potential V = - 
- AP cos n a. Converting to the polar coordinates x = r cos a, y = r sin u and noting that 
(p,i)(11n12(h+ArQcosna)],weobtatn 

aa - An cos (n + i) a a@ - Ansin(n+ 1)a 
-= 

as’ 2(h+Acosnzfr”)rnc” ’ aY 2 (h + Aces na / rn) rnfl 
(5.5) 

On the circle of radius r surrouuding the singular point 0 (r = 01 we have dx = - r sin a 
da, dy = r cos ad a, so that by (4.1) Ed (5.5). on taking the limit as r + 0, we obtain 

1 - 

c 

An cos nada n 

J=sf!! c 2(hr”+Acosna)P~ (5.6) 
0 
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Hence, for n 2 2 we have I >, 1, which by Theorem 2 ensures the nonexistence of closed 
orbits (cycles). 

Let us consider in more detail the case of a quadrupole (n = 2) when the family of equi- 
potential lines f a= C cos 2~ (C is a constant) is a fs&ly of Bernoulli lemniscarks 1127 of 
the four-leaf clover shape shown in Fig. 1. 

Differential equation (5.4) of the trajectories be- 
comes 

E’ (gp -i- gqtg 2a = E (EE” - %‘*) (5.7) 

for n = 2. 

Fig. 1 

Since the conditions of Theorem 2 (s = 2, f = 1) 
are fulfilled here by virtue of (5.6). cycles cannot 
exist in the force field of a quad~pole, and differ- 
ential equation (5.7) of the trajectories does not have 
periodic solutions associated with closed trajectories. 

Introducing the new variable r7 = tg N, where ct is 
the angle formed by the tangent to the trajectory and 
the radius vector r passing through the point of tan- 
gency, noting that tg u = f/f’= - e/t’! integrating 
(5.7), and clearing logarithms, we obtam the first 
integral 

1 i-~r=bcos2u (b = const) (5.8) 

Next, determining l/q = - [‘/Q, integrating, and converting to the variable r, we ob- 
tain the equation of the trajectory in polar coordinates, 

; da 
(5.9) 

Here r. and ao are the parameters which define the initial position of the representing 
point of the system. The choice of sign in front of the root is determined by the initial 
velocity vector V. = w. exp (ipo), since q. = tg /.to. 

The integral in the right side of (5.9) can be expressed in terms of Jacobi elliptic func- 
tions, introducing a new variable T 

b-i -- 
"-b+l (5.10) 

and using the relationships for Jacobi elliptic functions [133 

snr7+ctl~%==1, kesn”%+dn”-r=i k’-= &<‘) 
On integrating we obtain 

& 
bcosL?a--i = 

We thus arrive at the following representation of the equation of the trajectories: 

Ifa 
CtlT (5.11) 

where the initial value of the parameter ho must be determined from the relation tg ao = a 
cn 7o. If we set Uo = 0 (this can always be done by rotating the axes), it turns out that 
cn 7o 2 0. 

Hence, 7o = K, whete K (k) is the value of the total elliptic integral of the first kind with 
the modulus k = Jam. 

We note that t= l/f = const is also a solution of (5.7). This result can be obtained by 
considering the first integral of (5.8) which we represent in the form cos2b 00s 2~ = cosg~o 
and assume that the angle of departnn is go = n/2. 

Analysis based on consideration of the equations of motion in the field of a quadmpole, 
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r” - ra’? + 
2A CO8 2u 

r8 =o, 

indicates that under the initial conditions t = 0, u 
r = const coaesptmds to the oscillatory motion of t 

= 0, q, 
% 

I z/2, h = 0, r = ro the solution 
e representing point M along the arc 

M M of a circle of radius r = r 

‘de points M, and MZ 

o with the angular amplitude a = y4 (see Fig. 1). 

at which the velocity of the representing point M becomes zero 

are cusps. 
The angular velocity 0, the angular acceleration E , and the oscillation period T are 

given by 

a3=Bcos2a, e=-Bsin&, 
2A 

I?=---+ 

By making the substitution tg u = cn Twe can express the above integral in terms of 
Jacobi elliptic functions. Omitting the computations and making use of the value for B, we 
finally obtain the following expression for the period 

(5.12) 

Here M is the dipole moment and K (k) is the value of the total elliptic integral of the 

first kind with the modulus k = m. It is clear from this that the period T depends on the 

dipole moment M and on the initial radius of departure rO. 
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