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We consider the motion of a conservative system with two degrees of freedom in a plane
harmonic force field, i.e. in a field whose potential V (x, y) satisfies the Laplace equation
AV (x, y)=0.

The simplest example of such a field is a homogeneous gravitational force field, Another
example is the field formed by the logarithmic potential ¥ = A4 In r or the multipole field
with the potential ¥ = Ar*®coana. It is clear that harmonic fields include those formed by
superposition of the above fields. The potential of an arbitrary harmonic field can be expre-
ssed in the form V (x, y) = Re f () or ¥V (%, ¥) = Im f(z), where f(z) is an arbitrary analytic
function of the complex variable 3= x + iy.

Harmaic force fields occur in various physical problems, e.g. in investigating the mo-
tion of charged particles in electric and magnetic fields [1 and 2], in computing of electro-
nic trajectories in electron optics [3 and 4], etc.

1. Let M be the representing point of the system under consideration. If we neglect the
relativistic variation of the mass m with changes in velocity v (i.e. if we assume that v/¢c
<« 1, where ¢ is the velocity of light in vacuum), then the problem of finding the trajectories
of motion of a point of unit mass {m = 1) in an arbitrary conservative field with the potential
V(x, y) with an energy constant h reduces to integrating the nonlinear second-order differ-
ential equation [5]
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Assuming that the potential ¥ (x, y) satisfies the Laplace equation AV (x, y) = 0, we

infer from the energy integral and from (1.1) that
Av? =0, AD (z, y) = —2(®,% + O 1.2

i.e. that the function v? is also harmonic, and that @ (x, y) belongs to the class of super-
harmonic functions [6] by virtue of the condition A® (x, y) < 0.

We note that the case AD(x, y) = 0, AV <0, i.e, the case where P (%, y) is a harmonic
function and where the potential ¥ (x, y) belongs to the class of superharmonic functions,
yields a hydromechanical analogy [7].

2. Let us reduce differential equation (1.1) of the tiejectories to its simplest form, In-
troducing the angle ¢/ (x, ) = arc tgy * formed by the velocity vector V and the positive x-

axis, we obtain

20 a0
dp (z, y) = —a—y—-dz— ¥ e (@®=lnv) (2.1)

Next, writing
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and introducing the complex variable z = x + iy, we can readily obtain from (2.1) and (2,2)
an expression for the logarithm of the complex velocity {= v exp (—ii)of the point M,
v ov
d 111@:9—(;;& ((n (5) = — —65—_}-;'—6—!/-) (2.3)
Here  (z) is an analytic function of the complex variable z, this is because one of the
Cauchy-Riemann conditions is fulfilled by virtue of the condition of a harmonic force field
while the other is fulfilled identically by virtue of the continuity of the partial derivatives.
We denote the integral of the analytic function @ (z) by W (2), i.e.

W () =9 (= y) +ix (= y) (W ()= Sm(z) dz) (2.4)

Now, integrating (2.3) and separating the real and imaginary parts, we find by virtue of
(2.4) that
9 (z, y) =1, v*(z, y) + const, dy (z, y) = —* (z, y) dp (2.5)
This implies that the lines ¢ (x, y) = const are associated with the equipotential lines
V(x, y) = const, and that the lines ) (x, y) = const are no longer associated with the isocli-
nes Ef]the trajectory { (x, y) = const as they are in the case of the hydromechanical ana-
logy {7].

3. For an arbitrary harmonic force field with the potential ¥ (x, y) the relationship bet-
ween the functions s (x, y) and :X(x, y) is given by nonintegrable differential relation (2,5)

It is therefore impossible to obtain a closed solution in the general case of an arbitrary
harmonic function. The trajectory can be constructed quite accurately by graphic means,
however. This involves using the grid formed by the equipotential lines ¥ (x, y) = const and
the lines y (x, ¥) = const orthogonal to them.

With this method approximation of the trajectory between two neighboring points is linear
(in contrast to the Kelvin “‘radii of curvature’’ method [8 and 9]) as in [10], the difference
being that the lines y (x, y) = const are no longer the isoclines of the trajectories.

Let the initial position of the moving point be Ayl = %, +iy,), and let its initial velo-
city be ;= v, exp (i)

We construct a ray from the point A at the angle Y, to the x-axis. This ray intersects
the line ), = ¥ (x,, y,) at the point A, (z; =%, +iy )

We continue to approximate the trajectory with a broken line by replacing each trajectory
arc passing through the two neighboring lines X;+ and X} 45 by the chord 4 +1 4,,, at the
angle i, 4, to the x-axis; this angle can be determined by integrating (2.5). Making use of
the energy integral and noting that the integrand in the right side of (2.5) is of fixed sign, we
apply the mean-value theorem to obtain

X — Xin

Vi — = TE—V" G=90,1,2..) (3.1

where F; * is the mean value between V| = Vix, v)) and Vygy = Vx4, Yt >

Thus, making use of recursion relation (3.1) and knowing /s, (the initial angle of departure
Y, is prescribed), we can find (/1’ 4+, and thus construct the points A)ﬂ « Joining these points
with a broken line, we obtain the approximate shape of the trajectory,

4. Let us consider the existence of closed trajectories (cycles) in harmonic force fields.
To do this we make use of the notion of the quasi-index J, of the singular point 0; of the
force field potential defined as the limiting value of the curvilinear integral taken over a
circle (y) of the small radius r surrounding the sir jular point Oj [11], i.e.

1 . oD a0
JJ.=-2-R-]1m By ix—"—a; dy (4.1)

)
As we showed in[11], the existence of cycles implies fulfillment of the basic relation
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where J is the sum of the quasi-indices I; of the singular points 0; (= 1, 2,. s k) lying
inside the closed orbit (C). Integration i xs carried out over the domaln (0) minus the singular
points O, bounded by the contour (C).

The {ollomng theorems are valid for harmamic force fields:

Theorem 1. If some closed trajectory (C) exists in the domain (G) of the force
field under consideration, then the sum of the quasi-indices J; of the singular points 0,
lying within (C} in this domain must satisfy the condmon

—o<J< 1 (J:E .z,.) (4.3)
§=1
Theorem 2 Ifthe sum of the quasi-indices J; of the singular points 0, (i =1,
2,..., k) satisfies the condition

k
1<T < o0 (J=§‘I J,.) (4.4)
i=1
in the domain (G) of the force field under consideration, then there are no closed trajector-
ies (cycles) in the domain (G).
The proofs of these theorems follow directly from basic relation (4.2) if we recall that
the condition A® < 0 holds for harmonic force fields.

5. Let us consider some applications. Let the equation of the trajectories in polar co-
ordinates be of the form r = r{a). Making use of the expression
Irtga4-r
P == are tg;r—_r_@ (5.1}
familiar to us from differential geometry, we can rewrite differential equation (2.5) of the
trajectories in polar coordinates,
(r2 + )dy (ra) = —2(h — V(ry a))(— rr’" + 2r'2 + r¥) da (5.2)
Here the prime denotes differentiation with respect to.a; 4 is the energy constant,
For example, for a multipole field with the potential
M cosna (A—— M )
2 pn T 2n

where M is the dipole moment, we find from (2.3), (2.4), and {2.5) that

Vir,o)=—

__Acosnz Asinnx A
=" A== (W(Z)z;a‘) (5.3)

and differential equation (5,2) of the trajectories on introduction of the new variable £= 1/r
when the energy constant A is equal to zero becomes
n(E?+8) (Fgne + 5 =28E" +5 (5.4)

Let us investigate the values of the parameter n for which differential equation (5.4) of
the trajectories admits of periodic solutions associated with closed orbits (cycles). To do
this we compute the quasi-index/ of the singular point O (r = 0) of the potential V = —
— Ar™ cos n a. Converting to the polar coordinates x = r cos a, y = r sin & and noting that
=% 1a[2(h + Ar™ cos na)], we obtain

o — Ancos(n4 D a v —Ansin(n 4+ 1a
i ' By Ty oL (5.5)
9z 2(h+ Acosna/r®y ettt Y 2(h4 Acosna/r™yr

On the circle of radius r surrounding the singular point O {r= 0) we have dx = —r sin o
da, dy =r cos ada, so that by (4,1) and (5.5), on taking the limit as r » 0, we obtain
on
1 Q An cos nady n

J=m 2, lim 2 (hr™ -+ A cos na) =z 68
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Hence, for n > 2 we have J > 1, which by Theorem 2 ensures the nonexistence of closed
orbits (cycles).

Let us consider in more detail the case of a quadrupole (n = 2) when the family of equi-
potential lines r 2= C cos 2a (C is a constant) is a family of Bernoulli lemniscates [12] of
the four-leaf clover shape shown in Fig. 1.

Differential equation (5.4) of the trajectories be~
comes

EFET g2 =5E" -8 67
forn= 2.

Since the conditions of Theorem 2 (n = 2, J = 1)
are fulfilled here by virtue of (5.6), cycles cannot
exist in the force field of a quadrupole, and differ-
ential equation (5.7) of the trajectories does not have
periodic solutions associated with closed trajectories.

Introducing the new variable 7= tg i, where 1 is
the angle formed by the tangent to the trajectory and
the radius vector I passing through the point of tan-
gency, noting that tg u = r/r’= — £ /£, integrating
(5.7), and clearing logarithms, we obtain the first
integral
Fig. 1 1 4 12 = bcos 2a (b = const) (5.8)

Next, determining 1/= — £’/ £, integrating, and converting to the variable r, we ob-
tain the equation of the trajectory in polar coordinates,

- 2
r do

S Vicem =1

Xo

(5.9)

Here 1, and Q. are the parameters which define the imitial position of the representing
point of the system. The choice of sign in front of the root is determined by the initial
velocity vector V, = v, exp (iu,), since n, = tg .

The integral in the right side of (5.9) can be expressed in terms of Jacobi elliptic func-
tions, introducing a new variable 7

tga=acnT, enT= (_I_Z’_)'/*w (a’=:%) (5.10)

and using the relationships for Jacobi elliptic functions [13]

a*
sp?v-4cenfv=1, ksn’v4dnv=1 (k’=m<1)
On integrating we obtain
T

R e et
bcos2a—1 V2b

We thus arrive at the following representation of the equation of the trajectories:

T Tp—T _(b—1 s
1n—r°—— v tga""(b-_'-{—i) cnt (5,11)

where the initial value of the parameter 7 must be determined from the relation tg ay = a
cn 7, . If we set &, = 0 (this can always be done by rotating the axes), it turns out that
enT, =0,

Hgnce, To=Ky where K (k) is the value of the total elliptic integral of the first kind with
the modulus k =+/a2/(1 + a2).

We note that £= 1/r = const is also a solution of (5.7). This result can be obtained by
considering the first integral of (5.8) which we represent in the form cos?y cos 2a = cos?y,
and assume that the angle of departure is p, = /2.

Analysis based on cousideration of the equations of motion in the field of a quadrupole,
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. ., 2Acos2a d . 2A4sin 2
r —-ra-—l——r,,——:(), -Ft—(r-a)—i-——?g——:

indicates that under the initial conditions ¢ = 0, a_ = 0, T /2, h=0,r= To the solution
r= const cormresponds to the oscillatory motion of the representing point M. along the arc
M1M of a circle of radiua 7 =r _with the angular amplitude a = 1/4 (see Fig. 1).
e points ¥ | and M, at which the velocity of the representing point ¥ becomes zero
are cusps.
The angular velocity @, the angular acceleration &, and the oscillation period T are

given by

n/4
T i 5 do (mz Bcos?2 Bsin2a, B 24 )
m—— —_— = s 20, &= — i , =
VB V cos2a s rot

°

By making the substitution tg & = cn 7Twe can express the above integral in terms of
Jacobi elliptic functions. Omitting the computations and making use of the value for B, we

finally obtain the following expression for the period
2K M -
_ . _ A2

retn (amit) o

Here M is the dipole moment and K (k) is the value of the total elliptic integral of the
first kind with the modulus k =/ 1/2. It is clear from this that the period T depends on the
dipole moment M. and on the initial radius of departure r

0°
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